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LETTER TO THE EDITOR 

Critical properties of an S = 1 multispin coupling king model 

F Iglbitf, D KaporO and M SkrinjarO 
t Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Str 77, D-5000 Koln 41, 
West Germany 
5 Department of Physics, University of Novi Sad, Novi Sad, Yugoslavia 

Received 2 4  November 1986 

Abstract. Strong and weak coupling series expansions are used to investigate the critical 
properties of the S = 1 multispin coupling Ising chain in the presence of a transverse field. 
The order of the transition goes from second order to first order when more than three 
spins are coupled. According to the numerical results the two-spin and three-spin coupling 
models belong to the lsing and the four-state Potts universality classes, respectively. Thus 
the critical properties of the model d o  not depend on the value of the spin, even when 
three spins are coupled. 

In this letter we investigate the critical properties of a simple one-dimensional quantum 
model, described by the Hamiltonian 

1 h H = -- c sjs;,, . . . S:+"-,  -- 1 s; 
S" I S i  

where the S" and S' are quantum spin S operators. The model for S = i  has been 
introduced by Turban (1982) and Penson et a1 (1982) and has been investigated in 
several papers (Iglbi et a1 1983, 1986, Maritan et a1 1984, Alcaraz 1986, Kolb and 
Penson 1986, Blote et a1 1986, Alcaraz and Barber 1987, Vanderzande and Ig16i 1987). 
On the other hand, the two-spin coupling model for general values of the spin has 
been studied by Penson and Kolb (1984). 

The classical statistical mechanical equivalent of model ( 1 )  may be obtained by 
following the work of Suzuki (1976) and Oitmaa and Coombs (1981). For the S = 1 
model it is a two-dimensional square lattice S = 1 king model with m-spin interactions 
in the horizontal direction, and with two-spin interactions as well as with single site 
anisotropy terms and biquadratic pair interactions in the vertical. For larger values 
of the spin the form of the interaction in the vertical direction, besides the two-spin 
interaction terms, becomes more and more complicated. These terms, however, are 
irrelevant in determining the critical properties of the system for m = 2, and presumably 
they remain irrelevant also for m > 2. 

The phase structure of the model in ( 1 )  is the same for all values of the spin. In 
the strong coupling regime, when h < h* the system exhibits a 2"-'-fold degenerate 
ground state with non-vanishing order parameter ( S ? )  # 0 while in the weak coupling 
regime for h > h* the system is in a non-degenerate ground state with ( S : )  = 0. At 
h = h*,  at the critical value of the coupling, a phase transition takes place in the system. 

$ Permanent address: Central Research Institute for Physics, H-1525 Budapest, Hungary, 
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For the two-spin coupling model the phase transition is of second order with two- 
dimensional Ising critical exponents independent of the value of the spin. This 
statement is exact for S = 4 (Pfeuty 1970) and for S > it is numerically justified (Oitmaa 
and Coombs 1981, Penson and Kolb 1984). On the other hand, the mean-field solution 
predicts a first-order transition for m > 2, which becomes exact in the m + 00 limit. 
Consequently, for all S the transition should go from second order to first order at 
some finite m , ( S )  value. 

The prediction of the mean-field theory, m,( S) = 2, probably underestimates this 
critical value. It is possible, however, to make another conjecture on the analogy of 
the q-state Potts model (Debierre and Turban 1983, Maritan et a1 1984). Supposing 
that the degeneracy of the ground state in the ordered phase determines the order of 
the transition in  both models in a similar way, then the critical value of m should be 
m,( S) = 3, independent of the value of the spin. For S = + recent numerical investiga- 
tions (Igloi et a1 1986, Alcaraz 1986, Blote et a1 1986) justify the validity of this 
conjecture. Furthermore the S = i, m = 3 model presumably belongs to the four-state 
Potts universality class (Blote et a1 1986, Vanderzande and Igl6i 1987, Alcaraz and 
Barber 1987). 

In this letter the investigation of the model is extended for the S = 1 case. We use 
strong and weak coupling series expansions, which have turned out to be very useful 
in the study of many systems (Hamer er a1 1979, Elitzur et a1 1979, Marland 1981, 
Hamer and Irving 1984) and  also for the S = $ model in (1) (Igloi et a1 1986). 

In the strong coupling expansion the transverse field is taken as a perturbation, 
and a series in powers of h is generated. The ground-state energy per site yields the form: 

( 2 )  E /  N = -C a,h'. 

On the other hand, in the weak coupling expansion the multispin coupling term is 
taken as a perturbation, and a series in powers of l / h  is generated: 

The coefficients of these series were calculated up  to tenth order for m = 2 and 3, and  
up  to eighth order for m = 4. They are presented in table 1. The numerical calculation 
of these coefficients needed about one hundred hours CPU time on a Masscomp-500 
computer. Since for the S = 1 models self-duality does not hold (in contrast to the 
S = models), there is no connection between the coefficients of the strong and weak 
coupling series and the phase transition point is not known exactly. Now supposing 
second-order transitions, the phase transition point and the a critical exponent might 
be estimated independently from strong and weak coupling series. However, these 
series contain strong confluent singularities and i t  is impossible to make a reasonable 
estimate from the relatively short series in this way. 

Much more accurate results may be obtained, however, by following the analysis 
used in the S = $  case (lg16i 1986, Igl6i et a1 1986). Let us denote by €: and E r  the 
ground-state energies calculated by strong and weak coupling expansions, respectively, 
keeping terms up to nth order. Then the phase transition point in the nth order 
(denoted by h:) is defined as the crossing point of these two expressions: 

E z ( h : )  = E y ( h : ) .  (4) 
Obviously h:+ h* when n + w .  Furthermore the order of the transition may be 
determined from the difference in the slopes at the crossing point. More precisely the 
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Table I .  Coefficients of the strong coupling ( a )  and of the weak coupling ( b )  series for 
the ground-state energy for m = 2, 3 and 4. 

I 1 1 
4 6 s 

( a )  
2 
4 0.005 208 333 0.008 333 333 0.006 454 613 
6 0.000 325 521 0.001 638 595 0.001 264 989 
8 0.000 209 780 0.000 525 128 0.000 388 008 

10 0.000 050 521 0.000 204 099 

( b )  
2 0.125 000000 0.041 666 667 0.015 625 000 
4 0.058 593 750 0.018 373 843 0.005 462 646 
6 0.036 254 883 0.012 068 269 0.002 932 599 
8 0.026 372 910 0.009 778 305 0.001 969 105 

10 0.021 608 243 0.008 995 761 

nth order latent heat, defined by 

goes to zero for second-order transitions, while it approaches a non-zero value for 
first-order transitions. 

The series for the phase transition points and for the latent heat are presented in 
table 2 .  From the series of phase transition points it is possible to make estimates with 
relatively small errors, which are also presented in table 2. This estimate for m = 2 
agrees well with the finite-size scaling result of Penson and Kolb (19843: h* = 1.326. 

To analyse the latent heat series the following asymptotic relation valid for second- 
order transitions (Igl6i 1986) is used: 

Table 2. Phase transition points ( h : )  and latent heats (L,,) in nth order of the expansion 
for m = 2, 3 and 4. In the last row the estimated values for n + Cc are given. 

2 1.403 032 0.234 984 1.209 263 0.568 419 1.152 464 0.700 120 
4 1.395 301 0.135 174 1.224709 0.478 251 1.164 500 0.647 670 
6 1.353 557 0.112 612 1.227 365 0.432 263 1.167 356 0.624 551 
8 1.343 903 0.084 412 1.228 297 0.400 972 1.168 454 0.610973 

10 1.335 929 0.068 408 1.228 778 0.377 427 

Estimate 1.32 10.01 0.0 1.230 * 0.002 0.0 1.172 * 0.002 0.47 1 0.05 
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According to this relation a plot of log( L, )  against log( n )  should approach a straight 
line with slope -( 1 - a )  for second-order transitions, while for first-order transitions 
the points bend off a straight line, signalling an a = 1 exponent, characteristic of 
first-order transitions (Fisher and Berker 1982). This plot is given in figure 1 for m = 2, 
3 and 4. In this figure the estimates for the (1 - a )  exponents obtained by a two-point 
fit are also presented. From these data one can conclude that the results for m = 2 are 
consistent with the king critical behaviour ( a  = 0). However, the effect of the confluent 
singularity is still strong. In the m = 3 model the estimates for the (1 - a )  exponent 
are continuously increasing with increasing n, while for the m = 4 model they are 
monotonically decreasing. Thus the order of the transitions turns from second order 
to first order at m, = 3. In order to make an estimate for the latent heat of the m = 4 
model in figure 2 the L, latent heats are plotted against n-”3 for m = 3 and 4. As is 
seen in this figure for m =4 the L, values lie well on a straight line and one may 
estimate the latent heat as L( m = 4) = 0.47 * 0.05. This is roughly twice as large as the 
latent heat of the same model for S = (Igl6i et al 1986). 

Finally we turn to the question of the transition in the m = 3 model. In this case 
we conjecture that the model belongs to the four-state Potts universality class. This 
conjecture is based on the degeneracy of the ordered ground state of the model and 
supported by the results of the series analysis. Supposing that the correction to the 
(1 - a )  exponent obtained by a two-point fit is of the form of constant/log( n ) ,  then 
the estimated value is close to the four-states Potts value (den Nijs 1979) 1 - a = i, as 
is seen in figure 3. Thus it seems to be very probable that the universality class of the 
model in (1) does not depend on the value of the spin. 

To summarise the phase transition in the multispin coupling Ising models shows 
similar behaviour for S = f and S = 1. In both cases the transition turns from second 
order to first order when more than three spins are coupled. Furthermore the critical 

Figure 1. The nth-order latent heat L,, against n on a log-log plot for different values of 
the coupled spins. The estimates for the 1 -a exponent obtained from the slopes between 
two neighbouring points are also given. 
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Figure 2. The nth-order latent heat L, against n-"3 for m = 3 and 4. The broken lines 
indicate the possible asymptotic behaviours. 

l l l n  n 

Figure 3. The ( 1  - a )  exponent obtained by a two-point fit against l / log(n)  for the m = 3  
model. 

properties of the models for rn = 2 and rn = 3 do not depend on the value of the spin. 
The rn = 3 model presumably belongs to the four-state Potts universality class, giving 
a further example for the relation that the degeneracy of the ordered ground state may 
determine the universality class of the model. 
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SFB 125. One of us (FI) is grateful to Professor J Zittartz for his hospitality at the 
University of Cologne and to R Dekeyser for his help in the series analysis. 
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